RECONSTRUCCIÓN DE PERFILES DE MASA Y LUZ DE GALAXIAS MEDIANTE EL EFECTO DE LENTE GRAVITACIONAL

Juan Aristizabal Duarte Director: Alejandro García Co-Director: Frédéric Courbin - EPFL

Universidad de los Andes, Bogotá, Colombia

¿QUE ES EL EFECTO DE LENTE GRAVITACIONAL?

Plano fuente

Plano lente

Plano observador

Image take it from Lyns, R., & Petrosian, V. 1986, Bulletin of the American Astronomical Society, 18,1014

- Einstein (1911,1914)
- Eddington (1919)

$$\widehat{\alpha} = \frac{2GM}{v^2 r}$$
 Incorrecto

$$\widehat{\alpha} = \frac{4GM}{v^2 r} \text{ Correcto}$$

EL EFECTO DE LENTE GRAVITACIONAL CONSIDERACIONES OPTICAS

HISTORIA DE LOS LENTES GRAVITACIONALES – EL DESARROLLO

- Oliver Lodge (1919)
- Chwolson (1924)
- Zwicky (1937)
- Refsdal (1964)

HST image: SLACSJ0737+3216

Image Credit: P. J. Marshall

ON THE POSSIBILITY OF DETERMINING HUBBLE'S PARAMETER AND THE MASSES OF GALAXIES FROM THE GRAVITATIONAL LENS EFFECT*

Sjur Refsdal

(Communicated by H. Bondi)

(Received 1964 January 27)

Summary

The gravitational lens effect is applied to a supernova lying far behind and close to the line of sight through a distant galaxy. The light from the supernova may follow two different paths to the observer, and the difference Δt in the time of light travel for these two paths can amount to a couple of months or more, and may be measurable. It is shown that Hubble's parameter and the mass of the galaxy can be expressed by Δt , the red-shifts of the supernova and the galaxy, the luminosities of the supernova "images" and the angle between them. The possibility of observing the phenomenon is discussed.

$$H = \frac{z_S z_B(\alpha_1 + \alpha_2)(\alpha_1 - \alpha_2)}{\Delta t (z_S - z_B)}$$

$$\mathsf{M} = \frac{\Delta t(\alpha_1 + \alpha_2)c^3}{16G(\alpha_1 - \alpha_2)}$$

$$z = \frac{\Delta \lambda}{\lambda}$$

FIG. 1.—The two light rays from S to O.

REQUISITOS PARA DETERMINAR EL PARAMETRO DE HUBBLE A PARTIR DEL EFECTO DE LENTE GRAVITACIONAL

Refsdal (1964).

Suyu, S. et al. (2017) in HOLiCOW I.

- 1. Tiempos de retardo entre las imágenes aparentes.
- 2. Imágenes de alta resolución.
- 3. Espectroscopia de campo amplio para la caracterización del medio que rodea la lente.
- 4. Velocidad de dispersión de la galaxia que actúa como lente..

(a) B1608+656

(b) RXJ1131-1231

(c) HE 0435-1223

(d) SDSS 1206+4332

(e) WFI2033-4723

(f) PG 1115+080

Imagen tomada de Suyu, S et al. (2017)

CARACTERÍSTICAS DEL EFECTO DE LENTE GRAVITACIONAL

LA ECUACIÓN DE LENTE

Recordando solución del lente de Einstein para $\hat{\alpha} = \frac{4GM}{c^2 r}$ $\beta = \theta - \frac{D_{ds}}{D_s} \hat{\alpha} = \theta - \frac{D_{ls}}{D_s D_l} \frac{4GM}{c^2 \theta}$

SOLUCIONES A LA ECUACION DE LENTE

$$\beta = \theta - \frac{D_{ds}}{D_s}\hat{\alpha} = \theta - \frac{D_{ls}}{D_s D_l}\frac{4GM}{c^2\theta}$$

Para condiciones de simetría en la cual el medio se encuentra justo detrás del lente en la misma línea de observación. $\beta = 0$

$$\theta = \theta - \frac{D_{ds}}{D_s} \frac{4GM}{c^2 \theta}$$

Solucionando la ecuación,

$$\theta_E = \sqrt{\frac{D_{ds}}{D_s} \frac{4GM}{c^2}}$$

$$\beta = \theta - \frac{D_{ls}}{D_s}\hat{\alpha} = \theta - \frac{D_{ls}}{D_s D_l}\frac{4GM}{c^2\theta}$$

$$\theta = \theta^2 - \frac{D_{ls}}{D_s D_l} \frac{4GM}{c^2}$$

Solucionando la ecuación,

$$\theta_{\pm} = \frac{\beta + \sqrt{\beta^2 + 4\theta_E^2}}{2}$$

SOLUCIONES A LA ECUACION DE LENTE

MODELOS DE MASA

Suponer la galaxia que actúa como lente como un elemento esférico, cuya materia compuesta de materia visible y materia oscura pueden interactuar gravitacionalmente a través del teorema virial

$$\frac{GM}{R} = \frac{1}{2}v^2$$

Donde se evalúa la densidad masa como $M(R) = \rho V(R)$

$$\frac{G\rho V(R)}{R} = \frac{1}{2}v^2$$

Para una esfera isotérmica no singular se tiene que:

$$o = \frac{v^2}{2\pi G R^2}$$

Para una lente en la que se considera una densidad superficial.

$$\Sigma(\xi) = \int \rho(\xi, z) dz = \frac{v^2}{2G} \xi^{-1}$$

MODELOS DE MASA

Retomando la densidad de masa superficial

$$\Sigma(\xi) = \frac{v^2}{2G}\xi^{-1}$$

Ahora, se define densidad de masa superficial critica

$$\Sigma_{cr} = \frac{c^2}{4\pi} \frac{D_s}{D_l D_{ls}}$$

De esta manera podemos definir **la densidad de** masa superficial adimensional o convergencia

$$\kappa(\xi) = \frac{\Sigma(\xi)}{\Sigma_{cr}}$$

Y se puede relacionar así mismo con la ecuación de Poisson

$$\nabla^2 \psi(\xi) = 2\kappa(\xi)$$

Esto permite redefinir de igual forma la ecuación de lente

$$y = x - \alpha(x)$$

 $y = x - \nabla \psi(x)$

MODELOS DE MASA

Retomando la ecuación de Poisson

$$\nabla^{2}\psi(\xi) = 2\kappa(\xi)$$

$$\kappa(\mathbf{x})_{sis} : \frac{\theta_{E}}{2\sqrt{q^{2}x_{1}^{2}+x_{2}^{2}}}$$

$$\kappa(\mathbf{x})_{sis} : \frac{\theta_{E}}{2\sqrt{q^{2}x_{1}^{2}+x_{2}^{2}}}$$

$$\kappa(\mathbf{x})_{sie} : \frac{\theta_{E}}{2\sqrt{q^{2}x_{1}^{2}+x_{2}^{2}}}$$

$$\kappa(\mathbf{x})_{sie} : \frac{\theta_{E}}{2\sqrt{q^{2}x_{1}^{2}+x_{2}^{2}+s^{2}}}$$

$$\kappa(\mathbf{x})_{nis} : \frac{\theta_{E}}{2\sqrt{q^{2}x_{1}^{2}+x_{2}^{2}+s^{2}}}$$

$$\kappa(\mathbf{x})_{nie} : \frac{\theta_{E}}{2\sqrt{q^{2}x_{1}^{2}+x_{2}^{2}+s^{2}}}$$

$$\kappa(\mathbf{x})_{nie} : \frac{\theta_{E}}{2\sqrt{q^{2}x_{1}^{2}+x_{2}^{2}+s^{2}}}$$

$$\kappa(\mathbf{x})_{spemd} : \left[\frac{q^{2}x_{1}^{2}+x_{2}^{2}+s^{2}}{\theta_{E}^{2}}\right]^{\frac{3-\gamma}{2}-1}$$

$$\kappa(\mathbf{x})_{spemd} : \left[\frac{q^{2}x_{1}^{2}+x_{2}^{2}+s^{2}}{\theta_{E}^{2}}\right]^{\frac{3-\gamma}{2}-1}$$

$$\psi(\mathbf{x})_{spep} : \frac{2\theta_{E}^{2}}{(3-\gamma)^{2}} \left[\frac{q^{2}x_{1}^{2}+x_{2}^{2}+s^{2}}{\theta_{E}^{2}}\right]^{\frac{3-\gamma}{2}} + \psi_{\gamma_{s}}$$

$$\psi(\xi) = \frac{2E^{2}}{\eta^{2}} \left[\frac{\xi^{2}+s(\xi_{0})^{2}}{E^{2}}\right]^{\frac{\eta}{2}} \text{ Schramm(1990)}$$

$$\xi^{2} = x^{2} + \frac{y^{2}}{\cos^{2}\beta} \quad \cos^{2}\beta = \frac{b}{a} = q$$

SISTEMA 2M1310-1714

Imagenes de COSMOGRAIL

Courbin, Millon, Galan (2019)

https://www.epfl.ch/labs/lastro/s cientific-activities/cosmograil/

SISTEMA 2M1310-1714

- Usualmente la Fuente de fondo corresponde a una AGN
- Debido a esto la luz de las imágenes aparente pueden tener mayor intensidad que la luz de la lente
- Source redshift of 2M1310 is $z_Q = 1.975$ Lucey et al. (2018)
- Lens redshift of 2M1310 is $z_Q = 0.293$ Lucey et al. (2018)

Imagen tomada de Lucey et al. (2018) https://www.epfl.ch/labs/lastro/using-gravitational-lensing-to-measure-thehubble-constant/

PROCESAMIENTO DE LAS OBSERVACIONES

Para la reconstrucción del sistema 2M1310-1714 es necesario:

- 1. La observación del objeto.
- 2. Una PSF, tomada a partir de la mayor cantidad de fuentes puntuales del Chip de la CCD.

 3. El mapa de ruido de la observación.

MAPA DE RUIDO DEL SISTEMA 2M1310-1714

- El mapa de ruido permite considerar todo el ruido presente en la observación.
- Permite además detectar fuentes de luz presentes en el efecto de lente, como el anillo de Einstein.

$$N_{back} = \sqrt{S_{back} \cdot t + N_{read}^2 \cdot n},$$

MODELOS DE PROBABILIDAD – PRIMER NIVEL DE INFERENCIA

$$\log P(d_{data}|d_{model}) = \sum_{i} \frac{\left(d_{data,i} - d_{model,i}\right)^2}{2\sigma_i^2}$$

$$\sigma_{pixel,i}^2 = \sigma_{bkgd}^2 + \frac{d_{model,i}}{t_i},$$

VALORES INICIALES DE LOS MODELOS DE MASA

Modelo	Función	\mathbf{x}_A	\mathbf{x}_B	\mathbf{x}_C	\mathbf{x}_D	β	θ_{E1}	θ_{E2}	q	ϕ	s	γ	γ_s	ϕ_s
		[//]	[//]	[//]	[//]	[//]	[//]	[//]	[-]	[rad]	[//]	[-]	[-]	[rad]
$\kappa(\mathbf{x})_{sis}$:	$\frac{\theta_E}{2\sqrt{x_1^2 + x_2^2}}$	2,23, 1,98	-2,9,0,32	$-1,\!8,2,\!44$	-0,0,0,03	0,00, 0,04	1,50	1,50	1,0	0,0	-	-	-	-
$\kappa(\mathbf{x})_{sie}$:	$\frac{\theta_E}{2\sqrt{q^2x_1^2+x_2^2}}$	2,69, 1,63	-2, 9, 0, 87	-1,0,2,90	0,32,-2,6	$0,\!02,0,\!20$	1,50	1,50	0,8	1,72	-	-	-	-
$\kappa(\mathbf{x})_{nis}$:	$\frac{\theta_E}{2\sqrt{x_1^2 + x_2^2 + s^2}}$	2,15,1,91	$-2,\!8,0,\!31$	-1,7,2,35	0,77,-2,7	$0,\!00,0,\!04$	1,50	1,50	1,0	0,0	0,10	-	-	-
$\kappa(\mathbf{x})_{nie}$:	$\frac{\theta_E}{2\sqrt{q^2x_1^2+x_2^2+s^2}}$	2,59,1,60	$-2,\!8,0,\!82$	$-1,\!0,2,\!78$	0,33,-2,5	$0,\!02,0,\!20$	1,50	1,50	0,8	1,72	0,10	-	-	-
$\kappa(\mathbf{x})_{spemd}:$	$\left[\frac{\frac{q^2x_1^2 + x_2^2 + s^2}{\theta_E^2}}{\theta_E^2}\right]^{\frac{3-\gamma}{2}-1}$	2,61, 1,61	-2,9,0,82	$-1,\!0,2,\!79$	0,33,-2,5	0,02,0,20	1,50	1,50	0,8	1,72	0,10	2,0	-	-
$\psi(\mathbf{x})_{spep}:$	$\frac{2\theta_E^2}{(3-\gamma)^2} \left[\frac{q^2 x_1^2 + x_2^2 + s^2}{\theta_E^2} \right]_{-1}^{\frac{3-\gamma}{2}}$	2,83, 1,57	-3,0,0,67	-0, 9, 2, 96	0,34,-2,5	$0,\!02,0,\!26$	1,50	1,50	0,9	1,70	0,10	2,0	-	-
$\psi(\mathbf{x})_{spep+s}$:	$-\frac{2\theta_E^2}{(3-\gamma)^2}\left[\frac{q^2x_1^2+x_2^2+s^2}{\theta_E^2}\right]^{\frac{3-\gamma}{2}}+\psi_{\gamma_S}$	2,68, 2,13	-3,0,-0,2	$-1,\!6,2,\!53$	0,64,-2,5	0,02,0,26	1,50	1,50	0,9	1,70	0,10	2,0	0,06	0,95
			NIS			SPEP + Shea	ur	¢.	×2		×1	4		
NIE B	SPEMD SPEMD		SPEP		4					₽.				

MODELOS DE LUZ

- El perfil de luz de Sérsic es el perfil mas general para el modelamiento de perfiles de luz en galaxias.
- Es el modelo mas común para caracterizas perfiles de luz en lentes gravitacionales.

$$I(R) = A \ e^{-k\left(\left(\frac{R}{R_e}\right)^{\frac{1}{n}} - 1\right)} \text{ Sersic (1968)}$$

- A = Amplitud
- R_e = Radio efectivo de Sérsic, encierra la mitad del total de la luz emitida por la galaxia.
- n = Indice de Sérsic, si n = 1, perfil exponencial de luz, para n = 4 Perfil de Luz de Vaucouleurs
- $k \approx 2n 1/3$ satisface la condición de la función Gamma $\gamma(2n; k) = \frac{1}{2}\Gamma(2n)$

$$R^2 = x^2 + \frac{y^2}{\cos^2 \beta}$$

MODELOS DE PROBABILIDAD – SEGUNDO NIVEL DE INFERENCIA

$$\log P(d_{data}|d_{model}) = \sum_{i} \frac{(d_{data,i} - d_{model,i})^2}{2\sigma_i^2}$$

$$\sigma_{pixel,i}^2 = \sigma_{bkgd}^2 + \frac{d_{model,i}}{t_i},$$

VALORES INICIALES DE PEFILES DE MASA Y DE LUZ

No	θ_{E1}	γ	e_1	e_2	θ_{E2}	γ	e_1	e_2	γ_{s1}	γ_{s2}	R_1	n_1	e_1	e_2	R_2	n_2	e_1	e_2
	[//]				[//]													
1	1,5	2,0	0,0	0,0	1,5	2,0	0,0	0,0	0,0	0,0	1,0	4,0	0,0	0,0	1,0	1,0	0,0	0,0
2	1,0	2,0	0,0	0,0	2,0	2,0	0,0	0,0	0,0	0,0	1,0	4,0	0,0	0,0	1,0	1,0	0,0	0,0
3	2,0	2,0	0,0	0,0	1,0	2,0	0,0	0,0	0,0	0,0	1,0	1,0	0,0	0,0	1,0	1,0	0,0	0,0
4	1,5	2,0	0,0	0,0	1,5	2,0	0,0	0,0	0,0	0,0	1,0	4,0	0,0	0,0	1,0	4,0	0,0	0,0
5	1,0	2,0	0,0	0,0	2,0	2,0	0,0	0,0	0,0	0,0	1,0	4,0	0,0	0,0	1,0	4,0	0,0	0,0
6	2,0	2,0	0,0	0,0	1,0	2,0	0,0	0,0	0,0	0,0	1,0	4,0	0,0	0,0	1,0	4,0	0,0	0,0
7	1,5	2,0	0,0	0,0	1,5	2,0	0,0	0,0	0,0	0,0	2,0	1,0	0,0	0,0	2,0	1,0	0,0	0,0
8	1,0	2,0	0,0	0,0	2,0	2,0	0,0	0,0	0,0	0,0	2,0	1,0	0,0	0,0	2,0	1,0	0,0	0,0
9	2,0	2,0	0,0	0,0	1,0	2,0	0,0	0,0	0,0	0,0	2,0	1,0	0,0	0,0	2,0	1,0	0,0	0,0
10	1,5	2,0	0,0	0,0	1,5	2,0	0,0	0,0	0,0	0,0	2,0	4,0	0,0	0,0	2,0	4,0	0,0	0,0
11	1,0	2,0	0,0	0,0	2,0	2,0	0,0	0,0	0,0	0,0	2,0	4,0	0,0	0,0	2,0	4,0	0,0	0,0
12	2,0	2,0	0,0	0,0	1,0	2,0	0,0	0,0	0,0	0,0	2,0	4,0	0,0	0,0	2,0	4,0	0,0	0,0

RESULTADOS

RESULTADOS

$$\psi(\mathbf{x})_{spep+s} = \frac{2\theta_E^2}{(3-\gamma)^2} \left[\frac{q^2 x_1^2 + x_2^2 + s^2}{\theta_E^2} \right]^{\frac{3-\gamma}{2}} + \psi(\gamma_s).$$

No	θ_{E1}	γ	e_1	e_2	θ_{E2}	γ	e_1	e_2	γ_{s1}	γ_{s2}
	[//]	[-]	[-]	[-]	[//]	[-]	[-]	[-]	[-]	[-]
Media	1,814	2,006	-0,020	-0,021	1,164	2,009	-0,014	0,004	-0,017	0,016
Mediana	1,830	2,007	-0,020	-0,014	1,158	2,001	-0,014	0,001	-0,017	0,018
STD	$\pm 0,114$	$\pm 0,022$	$\pm 0,013$	$\pm 0,027$	$\pm 0,119$	$\pm 0,031$	$\pm 0,014$	$\pm 0,016$	$\pm 0,016$	$\pm 0,015$

$$I(r) = I_e \exp\left\{-b_n \left[\left(\frac{R}{R_e}\right)^{\frac{1}{n}} - 1\right]\right\}.$$

No	R_1	n_1	e_1	e_2	R_2	n_2	e_1	e_2
	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
Media	1,564	3,250	-0,120	-0,094	1,264	3,747	-0,146	-0,123
Mediana	1,581	3,208	-0,124	-0,097	1,263	3,783	-0,143	-0,129
STD	$\pm 0,086$	$\pm 0,192$	$\pm 0,018$	$\pm 0,021$	$\pm 0,128$	$\pm 0,342$	$_{\pm 0,020}$	$\pm 0,028$

OBSERVACIONES DEL SISTEMA 2M1310-1714 MEDIANTE EL HST

RESULTADOS DE OBSERVACIONES DEL HST DE LOS MODELOS DE MASA

No	θ_{E1}	γ	e_1	e_2	θ_{E2}	γ	e_1	e_2	γ_{s1}	γ_{s2}
	[//]	[-]	[-]	[-]	[//]	[-]	[-]	[-]	[-]	[-]
Media	1,814	2,006	-0,020	-0,021	1,164	2,009	-0,014	0,004	-0,017	0,016
Mediana	1,830	2,007	-0,020	-0,014	1,158	2,001	-0,014	0,001	-0,017	0,018
STD	$\pm 0,114$	$\pm 0,022$	$\pm 0,013$	$\pm 0,027$	$\pm 0,119$	$\pm 0,031$	$\pm 0,014$	$\pm 0,016$	$\pm 0,016$	$\pm 0,015$

	θ_{E1}	γ	e_1	e_2	θ_{E2}	γ	e_1	e_2	γ_{ext}	ϕ_{ext}
	[//]	[-]	[-]	[-]	[//]	[-]	[-]	[-]	[-]	[-]
Media	1,724	1,965	-0,041	-0,016	1,312	2,079	-0,001	0,074	$5,\!49e-05$	0,054
Mediana	1,724	1,965	-0,041	-0,016	1,312	2,079	-0,001	0,074	7,17e - 05	0,054
STD	$\pm 0,002$	$\pm 0,002$	$_{\pm 0,001}$	$\pm 0,002$	$_{\pm 0,002}$	$_{\pm 0,002}$	$\pm 0,001$	$_{\pm 0,002}$	$\pm 3,65e - 04$	$_{\pm 0,003}$

RESULTADOS DE OBSERVACIONES DEL HST DE LOS MODELOS DE LUZ

No	R_1	n_1	e_1	e_2	R_2	n_2	e_1	e_2
	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
Media	1,564	3,250	-0,120	-0,094	1,264	3,747	-0,146	-0,123
Mediana	1,581	3,208	-0,124	-0,097	1,263	3,783	-0,143	-0,129
STD	$\pm 0,086$	$\pm 0,192$	$\pm 0,018$	$\pm 0,021$	$\pm 0,128$	$\pm 0,342$	$\pm 0,020$	$\pm 0,028$

	R_1	n_1	e_1	e_2	R_2	n_2	e_1	e_2
	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
Media	1,191	4,0	-0,139	-0,072	1,136	4,0	-0,157	-0,012
Mediana	1,191	4,0	-0,139	-0,072	1,136	4,0	-0,157	-0,012
STD	$_{\pm 0,005}$	$_{\pm 0,0}$	$_{\pm 0,002}$	$_{\pm 0,002}$	$\pm 0,005$	$_{\pm 0,0}$	$_{\pm 0,002}$	$_{\pm 0,002}$

CONCLUSIONES

- En este trabajo fue posible identificar los dos niveles de reconstrucción que se deben considerar a la hora de simular eventos de lente gravitacional. El primer nivel permite inferir el modelo de masa, el segundo permite identificar el modelo de luz.
- Los modelos de masa, correspondientes al primer nivel de inferencia, muestran resultados cercanos en ambas reconstrucciones, tanto para observaciones en tierra (ESO/MPIA 2.2m) como en orbita (HST).
- En el caso de los radios de Einstein del sistema 2M1310-3010, las diferencias son menores al 5 % entre ambas reconstrucciones. Incluso, estas diferencias son menores para los valores de distribución (γ) de ambos sistemas, cuyos errores de estimación no superan el 1 %.
- Además, fue posible mediante las simulaciones previas, distinguir una imagen aparente extra E, en la región central de la lente, entre las dos galaxias que componen el sistema.
- Aunque, en el segundo nivel de inferencia, el relacionado con los modelos de luz, si se presentan considerables diferencias (hasta el 24%), entre las reconstrucciones a partir de observaciones en tierra y observaciones en orbita.
- Por lo tanto, es posible a partir de observaciones en telescopios en tierra obtener los modelos de masa a partir de efectos de lentes gravitacionales con un alto grado de incertidumbre (cercano al 6%). Sin embargo y debido a la escala de la observación, obtener el perfil de luz no parece ser un proceso viable, debido a su diferencia con resultados de reconstrucciones con observaciones del HST (cerca del 24%).

RECOMENDACIONES Y TRABAJO FUTURO

- Suyu et al (2010), recomienda utilizar imágenes de alta resolución procedentes de telescopios en orbita o telescopios con óptica adaptativa.
- Determinar el valor del parámetro de Hubble a partir de observaciones con el telescopio ESO/MPIA 2.2. m

REFERENCIAS

- Birrer, S., & Amara, A. 2018, Physics of the Dark Universe, 22, 189
- Courbin, F., Suyu, S., Bonvin, V., et al. 2017, Monthly Notices of the Royal As-tronomical Society, 468, 2590
- Lyns, R., & Petrosian, V. 1986, Bulletin of the American Astronomical Society, 18,1014
- Refsdal, S. 1964, Monthly Notices of the Royal Astronomical Society, 128, 30735
- Suyu, S., Marshall, P., Auger, M., et al. 2010, The Astrophysical Journal, 711, 201
- Suyu, S., Auger, M., Hilbert, S., et al. 2013, The Astrophysical Journal, 766, 70

¡GRACIAS POR LA ATENCIÓN!