# Efectos sistemáticos en la diversidad de las curvas de rotación de galaxias locales

### Juan Manuel Pacheco Arias

Director: Juan Carlos Basto Pineda

Codirector: Luis Núñez





## Tabla de contenidos

Planteamiento del problema

### Observaciones sintéticas





Planteamiento del problema
 Observaciones sintéticas
 Resultados
 Conclusiones

# Planteamiento del problema

### ¿Hasta qué punto aumenta la diversidad en las curvas de rotación de galaxias en las simulaciones, al incluir algunos de los efectos sistemáticos a los que están sometidas las observaciones?

## Modelo cosmológico ACDM

### $\Lambda CDM \rightarrow Isotropía$ , Homogeneidad y Big Bang



Tomado de: https://www.forbes.com/sites/startswithabang/2019/02/19/this-is-why-we-arent-expanding-even-if-the-universe-is/#4c58da435311

## Simulaciones cosmológicas

### Simulaciones a gran escala

### Simulaciones hidrodinámicas



Tomado de: https://www.illustris-project.org/media/

Planteamiento del problema

Observaciones sintéticas

Resultados

**Conclusiones** 

6/20

### **Observaciones vs simulaciones**



### Curvas de rotación



# **Observaciones sintéticas**

### Muestras comparadas

### 248 Observaciones, Universo local



Tomadas de: https://ned.ipac.caltech.edu/

**Observaciones sintéticas** •

### 6 Simulaciones; 75 Snapshots, GADGET – 2 \*



\*Springel. Monthly notices of the royal astronomical society, (2005).

 $\Sigma_{\star}(r) = \frac{M_{\star}}{2\pi h_0^2} e^{-r/h_0} \quad \Sigma_{gas}(r) = \frac{M_{gas}}{2\pi h_{aas}^2} e^{-r/h_{gas}}$  $\log(M_{\star}) = 0.83 + 4.34 \log(V_{max})$ 10/20 Resultados Conclusiones

## **Observaciones sintéticas**





Línea de emisión

#### Ángulo de inclinación

# Resultados

## Variabilidad en las simulaciones



## Variabilidad en las observaciones sintéticas



## Variabilidad en las observaciones sintéticas



Planteamiento del problema **Observaciones sintéticas**  **Resultados** 

## Variabilidad en las observaciones sintéticas

**Observaciones sintéticas** 

•



Ruido y pérdida de información



• Planteamiento del problema

## Conclusiones

La inclusión de factores observacionales, en el proceso de observación sintético, aumenta la diversidad en las curvas de rotación para las galaxias simuladas (47 %) (97 % + barras de error).

El tipo de observación (long-slit vs 2D) fue el factor observacional que tuvo mayor impacto en el aumento de la diversidad para las curvas de rotación sintéticas (40 %).

La inclusión de errores en el ángulo de inclinación de las galaxias, puede derivar en aumentos de variabilidad porcentual de hasta 20 % en las curvas de rotación.

Las curvas de rotación extraídas directamente de las simulaciones con 2 métodos diferentes, en 3 instantes de tiempo distintos, son autosimilares.

La metodología de generación de experimentos sintéticos de este trabajo, garantiza una comparación objetiva entre ambas poblaciones de galaxias, logrando efectuar estudios sistemáticos cuyas conclusiones coinciden con lo reportado por otros autores.

Resultados

## XXII simposio de la sociedad chilena de física

XXII Simposio Chileno de Física Chile, 24-26 de noviembre de 2020

Gravitación y Cosmología

### Efectos sistemáticos en la diversidad de las curvas de rotación de galaxias enanas

Juan M. Pacheco-Arias<sup>1\*</sup>, Juan C. B. Pineda<sup>1</sup>, Luis A. Núñez<sup>1,2</sup>

<sup>1</sup>Escuela de Física, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga, Colombia. <sup>2</sup>Departamento de Física, Universidad de Los Andes, Mérida 5101, Mérida, Venezuela.

\*juan.pacheco@correo.uis.edu.co





# ¡Muchas Gracias!

## Modelo cosmológico ΛCDM

### Abundancia de elementos

### Expansión del Universo





Tomado de: https://www.shutterstock.com/es/search/expanding+universe

Tomado de: https://chemistrygod.com/the-most-abundant-elements

Planteamiento del problema
 Observaciones sintéticas

Resultados

Conclusiones

## Modelo cosmológico ΛCDM



Tomado de: https://www.esa.int/Science\_Exploration/Space\_Science/Planck/Planck\_and\_the\_cosmic\_microwave\_background

### Componentes del fluido cosmológico

 $\Omega_{\Lambda} \approx 0.69$ ,  $\Omega_{\text{CDM}} \approx 0.26$ ,  $\Omega_{\text{M}} \approx 0.05$ ,  $\Omega_{\gamma-\nu} < 0.01$ 

Planteamiento del problema
 Observaciones sintéticas
 Resultados
 Conclusiones

## **Observaciones Vs Simulaciones**

El problema de las galaxias satélites pérdidas

La catástrofe del momento angular

Perfil de densidad de materia oscura empinado Vs aplanado

La diversidad de curvas de rotación de galaxias enanas



Soluciones astrofísicas

Soluciones numéricas

Soluciones observacionales

### **Observaciones Vs Simulaciones**



#### Soluciones astrofísicas



### Soluciones observacionales

- Inclinación
- Resolución espacial
- Resolución espectral
- Movimientos no circulares

Tomado de: Se-Heon Oh, et al. "DARK AND LUMINOUS MATTER IN THINGS DWARF GALAXIES" (2011)

## Curvas de rotación y perfiles de densidad



### Curvas de rotación y perfiles de densidad



## **Observaciones Vs Simulaciones**



### Angular momentum catastrophe



Tomado de: https://www.researchgate.net/figure/The-missing-satellite-and-too-big-to-fail-problems-Left-Projected-dark-matter\_fig2\_237053797

Planteamiento del problema
 Observaciones sintéticas
 Resultados

Conclusiones

## Condiciones de las simulaciones



## Snapshots



## Universo local



![](_page_29_Picture_2.jpeg)

![](_page_29_Figure_3.jpeg)

### Características

- Buena resolución
- Máximo detalle
- Caracterización completa
- Misma época cósmica

Tomado de: https://en.wikipedia.org/wiki/Galaxy\_filament

Resultados

### Muestra de galaxias observadas

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_3.jpeg)

HI (21.37 %) Hα (15.32 %) HI + Hα (20.56 %) Estelar (39.91 %) Hβ + OIII (2.82 %)

Long-slit (68.95 %) 2D (31.04 %)

• Planteamiento del problema

Observaciones sintéticas •

Resultados • Conclusiones

### Muestra de galaxias simuladas

![](_page_31_Figure_1.jpeg)

Las galaxias simuladas son representativas de los valores medios de las características de las observaciones.

Planteamiento del problema

Observaciones sintéticas

Resultados

Conclusiones

### AURORA: observaciones sintéticas

![](_page_32_Figure_1.jpeg)

Planteamiento del problema

**Observaciones sintéticas** 

Resultados

### AURORA: observaciones sintéticas

![](_page_33_Figure_1.jpeg)

## AURORA: observaciones sintéticas

![](_page_34_Figure_1.jpeg)

Planteamiento del problema
 Observacion

Observaciones sintéticas

Resultados

Conclusiones

## Módulo de acople GADGET-AURORA

![](_page_35_Figure_1.jpeg)

Planteamiento del problema

**Observaciones sintéticas** 

Resultados •

Conclusiones

![](_page_36_Picture_0.jpeg)

![](_page_36_Figure_1.jpeg)

•

### Curvas de rotación KINEMETRY

 $V_{los}(R, \varphi) = V_c(R) \sin(i) \cos(\varphi)$ 

![](_page_37_Figure_2.jpeg)

Descomposición armónica de KINEMETRY

$$V_{los}(R,\varphi) = A_o(R) + \sum_{n=1}^N A_n(R)\sin(n\varphi) + B_n(R)\cos(n\varphi)$$

Tomado de: K. L. Shapiro, et al, The Astrophysical Journal, (2008).

Planteamiento del problema
 Observaciones sintéticas
 Resultados
 Conclusiones

### Curvas de rotación sintéticas

Long-Slit

•

#### 2D

![](_page_38_Figure_2.jpeg)

• Planteamiento del problema

Resultados

#### Ángulo de inclinación Línea de emisión Mapa de intensidad para $H_{lpha}$ Mapa de intensidad para H Mapa de intensidad para HI Mapa de intensidad para $H_{\alpha}$ -15 10-17 $10^{-19}$ cm<sup>-2</sup> km [kpc] $10^{-21}$ [kpc] 10-30 Flujo [*erg* Flujo - 10-25 10-27 -15 -10 X [kpc] X [kpc] Mapa de velocidad para HI Mapa de velocidad para H X [kpc] X [kpc] HI $H_{\alpha}$ Tamaño pixel : 1.5" • Tamaño pixel : 0.7" [kpc] Resolución : 6.0" Resolución : 2.0" • Tamaño canal : 20 km $s^{-1}$ • Tamaño canal : 5.2 km $s^{-1}$ R : 9000 • R : 3000 -6 -4 X [kpc] X [kpc]

### $H_{\alpha}$ y HI : 58 % de la muestra

- Planteamiento del problema
- Observaciones sintéticas
- Resultados
- Conclusiones

15°, 30°, 45°, 60° y 75° : 88,3 % de la muestra

/<sub>los</sub> [km s<sup>-1</sup>

#### Mapa de intensidad para $H_{\alpha}$ Mapa de intensidad para $H_{\alpha}$ [kpc] ≻ -6 -4 -4 -2 Ó ż Mapa de velocidad para $H_{\alpha}$ Mapa de velocidad para $H_{\alpha}$ [kpc] ≻ -6 -4 -2-6 -4 -2 X [kpc] X [kpc] 200,400 y 800 pc : 62,1 % de la muestra

#### Resolución espacial

![](_page_40_Figure_3.jpeg)

![](_page_40_Figure_4.jpeg)

/<sub>los</sub> [km s<sup>-1</sup>

-10

Planteamiento del problema 

**Observaciones sintéticas** •

**Resultados** 

10-16

10-22

 $10^{-26}$ 

-10

**Conclusiones** 

#### Errores en el ángulo de inclinación

#### Errores en la distancia

![](_page_41_Figure_3.jpeg)

$$V_{c}(R) = \frac{V_{los}(R,\psi) \,\alpha(\psi,\theta)}{\sin(\phi)\cos(\psi-\theta)} - V_{sys}$$

![](_page_41_Figure_6.jpeg)

*Errores aleatorios entre:*  $(0^{\circ} - 5^{\circ}) y (0^{\circ} - 10^{\circ})$ 

### *Errores de* 10% y 20%

Planteamiento del problema 

**Observaciones sintéticas** •

Resultados

Conclusiones 

### Tablas de variabilidad

#### Factores observacionales individuales

| $V_{2 k p c}$ |              |               |                       |                       |                       |  |
|---------------|--------------|---------------|-----------------------|-----------------------|-----------------------|--|
| Modelo        | Emisión      | Fenertrágrafo | Resolución            |                       |                       |  |
|               |              | Espectrograio | $\sim 200 \; [ m pc]$ | $\sim 400 \; [ m pc]$ | $\sim 800 \; [ m pc]$ |  |
| Dwarf1        | $H_{\alpha}$ | 2D            | $4,\!8\pm 1,\!5\%$    | $6,\!6\pm 1,\!3\%$    | $13,1\pm 3,8\%$       |  |
|               |              | Long-slit     | $3,7\pm 2,8\%$        | $4,\!6\pm 3,\!2\%$    | $5,0 \pm 2,7\%$       |  |
|               | HI           | 2D            | $15,7\pm 2,7\%$       | $17,0\pm 2,9\%$       | $20,1\pm 2,2\%$       |  |
|               | $H_{lpha}$   | 2D            | $6{,}6\pm1{,}8\%$     | $9,8 \pm 1,2\%$       | $15,\!6\pm1,\!6\%$    |  |
| Dwarf 2       |              | Long-slit     | $2,\!3\pm0,\!6\%$     | $3,1 \pm 1,0\%$       | $4,\!3\pm1,\!7\%$     |  |
|               | HI           | 2D            | $24,\!3\pm1,\!7\%$    | $24,8 \pm 1,4\%$      | $28,0 \pm 1,1\%$      |  |
| Dwarf3        | $H_{\alpha}$ | 2D            | $7,\!2\pm 3,\!5\%$    | $10,7\pm 3,2\%$       | $21,\!6\pm 0,\!7\%$   |  |
|               |              | Long-slit     | $4,7 \pm 2,8\%$       | $4,\!2\pm 1,\!4\%$    | $3,0 \pm 0,3\%$       |  |
|               | HI           | 2D            | $29,8 \pm 3,0\%$      | $31,\!3\pm2,\!9\%$    | $33,\!2\pm 2,\!4\%$   |  |
| Dwarf4        | $H_{\alpha}$ | 2D            | $20,0\pm 3,9\%$       | $24,2\pm 2,5\%$       | $34,0 \pm 1,8\%$      |  |
|               |              | Long-slit     | $2,7 \pm 0,1\%$       | $3,9 \pm 0,1\%$       | $6{,}5\pm0{,}3\%$     |  |
|               | HI           | 2D            | $46,1\pm 2,9\%$       | $45{,}8\pm 2{,}4\%$   | $46,7 \pm 2,3\%$      |  |
| $G \theta$    | $H_{\alpha}$ | 2D            | $9,7 \pm 2,0\%$       | $13,0 \pm 1,6\%$      | $21,5 \pm 2,0\%$      |  |
|               |              | Long-slit     | $4{,}4\pm1{,}6\%$     | $4,1 \pm 0,9\%$       | $3,4\pm0,1\%$         |  |
|               | HI           | 2D            | $18{,}4\pm1{,}6\%$    | $19,9 \pm 1,4\%$      | $19{,}0\pm1{,}3\%$    |  |
| <i>G</i> 1    | $H_{lpha}$   | 2D            | $25,4\pm 4,8\%$       | $29,3 \pm 4,8\%$      | $29,7 \pm 1,4\%$      |  |
|               |              | Long-slit     | $6,\!8\pm 2,\!2\%$    | $10,5 \pm 4,5\%$      | $14{,}6\pm7{,}4\%$    |  |
|               | HI           | 2D            | $38,1\pm 9,8\%$       | $40{,}2\pm10{,}0\%$   | $36,4\pm 6,2\%$       |  |

•

Factores observacionales en conjunto

| $ m V_{2kpc}$ |              |                          |  |  |  |
|---------------|--------------|--------------------------|--|--|--|
| Modelo        | Simulaciones | Observaciones sintéticas |  |  |  |
| Dwarf1        | 2,1~%        | $10,1 \pm 2,6 \%$        |  |  |  |
| Dwarf 2       | 4,6~%        | $13,2 \pm 1,3 \%$        |  |  |  |
| Dwarf3        | 6,7~%        | $16,2 \pm 2,2 \%$        |  |  |  |
| Dwarf4        | 7,2~%        | $25,6 \pm 1,8 \%$        |  |  |  |
| $G\theta$     | 6,5%         | $12,6 \pm 1,4 \%$        |  |  |  |
| G1            | 8,6%         | $25,7 \pm 5,7 \%$        |  |  |  |

### Tablas de variabilidad

Errores en el ángulo de inclinación

|                         |              | $ m V_{2kpc}$              |                         |                   |  |
|-------------------------|--------------|----------------------------|-------------------------|-------------------|--|
| Modele                  | Simulacionos | Observaciones sintáticos   | Errores en el ángulo    |                   |  |
| Modelo                  | Simulaciones | Observaciones sintericas - | $5^{\circ}$             | <b>10</b> °       |  |
| Dwarf1                  | 2,1%         | $10,1 \pm 2,6 \%$          | $13,2 \pm 3,8\%$        | $21,6 \pm 6,1 \%$ |  |
| Dwarf2                  | 4,6~%        | $13,2 \pm 1,3 \%$          | $18,4 \pm 5,1\%$        | $29,8 \pm 8,4\%$  |  |
| Dwarf3                  | 6,7~%        | $16,2\pm 2,2\%$            | $19,3 \pm 4,4\%$        | $27,6 \pm 9,7 \%$ |  |
| Dwarf4                  | 7,2%         | $25,6 \pm 1,8 \%$          | $31,2 \pm 4,2\%$        | $43,1 \pm 10,6\%$ |  |
| $G\theta$               | 6,5%         | $12,6 \pm 1,4 \%$          | $17,8 \pm 4,3\%$        | $29,7 \pm 9,1 \%$ |  |
| G1                      | 8,6~%        | $25,7 \pm 5,7 \%$          | $31,7 \pm 10,3\%$       | $46,5 \pm 17,1\%$ |  |
| Errores en la distancia |              |                            |                         |                   |  |
|                         |              | ${ m V_{2kpc}}$            |                         |                   |  |
| Madala                  | Simulacionos | Observaciones sintéticas   | Errores en la distancia |                   |  |
| Modelo                  | Simulaciones |                            | 10%                     | 20%               |  |
| Dwarf1                  | 2,1%         | $10,1 \pm 2,6 \%$          | $11,8 \pm 2,8\%$        | $11,7 \pm 3,1 \%$ |  |
| Dwarf2                  | 4,6%         | $13,2 \pm 1,3 \%$          | $13,4 \pm 1,2\%$        | $13,8 \pm 1,4\%$  |  |
| Dwarf3                  | 6,7~%        | $16,2\pm 2,2\%$            | $16,7 \pm 2,1\%$        | $17,7 \pm 1,7$ %  |  |
| Dwarf4                  | 7,2%         | $25,6 \pm 1,8\%$           | $26,2 \pm 1,5\%$        | $26,9 \pm 1,0$    |  |
| G0                      | 6,5 %        | $12.6 \pm 1.4\%$           | $15,4 \pm 1,1\%$        | $14,5 \pm 1,2$    |  |
| G1                      | 8.6%         | $25.7 \pm 5.7 \%$          | $27.5 \pm 7.3\%$        | $27.3 \pm 7.5$    |  |

Planteamiento del problema
 Observaciones sintéticas
 Resultados
 Conclusiones

### Tablas de variabilidad

### Pérdida de información y ruido

| $ m V_{2kpc}$ |              |                          |                   |                   |  |  |
|---------------|--------------|--------------------------|-------------------|-------------------|--|--|
| Modelo        | Simulaciones | Observaciones sintéticas | Pérdida           | Ruido             |  |  |
| Dwarf1        | 2,1~%        | $10,1 \pm 2,6 \%$        | $10,1 \pm 2,6 \%$ | $10,4 \pm 2,4 \%$ |  |  |
| Dwarf 2       | $4,\!6\%$    | $13,2 \pm 1,3 \%$        | $13,2 \pm 1,3\%$  | $14,0 \pm 1,3\%$  |  |  |
| Dwarf3        | 6,7%         | $16,2\pm 2,2\%$          | $16,2\pm 2,2\%$   | $16,7 \pm 3,0\%$  |  |  |
| Dwarf4        | 7,2~%        | $25,6 \pm 1,8 \%$        | $25,6 \pm 1,8\%$  | $25,8 \pm 1,7 \%$ |  |  |
| $G\theta$     | 6,5%         | $12,6 \pm 1,4 \%$        | $12,7 \pm 1,3 \%$ | $14,0 \pm 1,8\%$  |  |  |
| G1            | 8,6~%        | $25,7 \pm 5,7 \%$        | $25,7 \pm 5,7 \%$ | $26,4\pm 5,3\%$   |  |  |

#### Cantidad de snapshots

| $ m V_{2kpc}$ |              |                          |                   |                  |  |
|---------------|--------------|--------------------------|-------------------|------------------|--|
| Modelo        | Simulaciones | Observaciones sintéticas |                   |                  |  |
|               |              | $3 \ snapshots$          | $30 \ snapshots$  | $60 \ snapshots$ |  |
| Dwarf1        | 2,1%         | $10,1 \pm 2,6 \%$        | $10,2 \pm 1,0 \%$ | $9,9 \pm 0,9 \%$ |  |

## Tablas de variabilidad + barras de error

Factores observacionales individuales + barras de error

| ${ m V_{2kpc}} \; [{ m km} \; { m s}^{-1}]$ |              |               |                       |                             |                       |
|---------------------------------------------|--------------|---------------|-----------------------|-----------------------------|-----------------------|
| Modelo                                      | Emisión      | Fenoctrógrafo | Resolución            |                             |                       |
|                                             |              | Espectrograto | $\sim 200 \; [ m pc]$ | $\sim 400 \; [ m pc]$       | $\sim 800 \; [ m pc]$ |
| Dwarf1                                      | $H_{\alpha}$ | 2D            | $24,7 \pm 4,6\%$      | $39,1 \pm 7,0\%$            | $52,9 \pm 8,6\%$      |
|                                             |              | Long-slit     | $6,1 \pm 2,1\%$       | $6,4 \pm 2,4\%$             | $6,8 \pm 2,7\%$       |
|                                             | HI           | 2D            | $27,\!3\pm 5,\!3\%$   | $39,1\pm 6,9\%$             | $50,\!3\pm 5,\!3\%$   |
|                                             | $H_{\alpha}$ | 2D            | $27,\!2\pm2,\!9\%$    | $40,2\pm 2,4\%$             | $63,\!9\pm2,\!5\%$    |
| Dwarf 2                                     |              | Long-slit     | $5,0 \pm 1,8\%$       | $7,0 \pm 1,9\%$             | $5,7 \pm 2,6\%$       |
|                                             | HI           | 2D            | $33,1 \pm 1,9\%$      | $38,9 \pm 1,4\%$            | $49{,}3\pm1{,}4\%$    |
|                                             | $H_{lpha}$   | 2D            | $23,\!9\pm 4,\!2\%$   | $39,3 \pm 6,1\%$            | $70,0 \pm 4,3\%$      |
| Dwarf3                                      |              | Long-slit     | $7,\!6\pm 3,\!2\%$    | $8,0 \pm 2,6\%$             | $5,7 \pm 1,5\%$       |
|                                             | HI           | 2D            | $35,8 \pm 3,3\%$      | $42,\!4\pm2,\!5\%$          | $53,\!3\pm 1,\!0\%$   |
| Dwarf4                                      | $H_{\alpha}$ | 2D            | $31,\!8\pm 3,\!2\%$   | $45,\!3\pm1,\!9\%$          | $72,\!3\pm1,\!7\%$    |
|                                             |              | Long-slit     | $6{,}6\pm0{,}1\%$     | $8,8 \pm 0,7\%$             | $14,9 \pm 0,1\%$      |
|                                             | HI           | 2D            | $51,\!6\pm 2,\!3\%$   | $56,7 \pm 2,0\%$            | $66,\!6\pm 1,\!3\%$   |
| G0                                          | $H_{\alpha}$ | 2D            | $33,\!8\pm 2,\!2\%$   | $51,7\pm 2,7\%$             | $73,\!9\pm1,\!8\%$    |
|                                             |              | Long-slit     | $7,5 \pm 1,3\%$       | $7,2\pm 0,6\%$              | $8,8 \pm 2,9\%$       |
|                                             | HI           | 2D            | $34,8 \pm 2,0\%$      | $45{,}3\pm1{,}9\%$          | $55,\!4\pm1,\!3\%$    |
| <i>G1</i>                                   | $H_{\alpha}$ | 2D            | $55,\!6\pm12,\!2\%$   | $\overline{69,6\pm 12,2\%}$ | $97,0\pm 0,6\%$       |
|                                             |              | Long-slit     | $11,\!2\pm2,\!5\%$    | $14,5 \pm 5,1\%$            | $17,\!8\pm7,\!8\%$    |
|                                             | HI           | 2D            | $72,\!6\pm 21,\!4\%$  | $87{,}3\pm25{,}8\%$         | $97,\!8\pm21,\!8\%$   |

Planteamiento del problema
 O

Observaciones sintéticas

Resultados

Conclusiones

### Correcciones para movimientos no circulares

![](_page_46_Figure_1.jpeg)

Planteamiento del problema **Observaciones sintéticas** •

### Curvas de rotación

#### Factores observacionales

![](_page_47_Figure_2.jpeg)

**Observaciones sintéticas** 

#### Factores observacionales + errores

![](_page_47_Figure_4.jpeg)

Resultados • Conclusiones

•

Planteamiento del problema